Road to Super Intelligence

Imagine taking a time machine back to 1750—a time when the world was in a permanent power outage, long-distance communication meant either yelling loudly or firing a cannon in the air, and all transportation ran on hay. When you get there, you retrieve a dude, bring him to 2015, and then walk him around and watch him react to everything. It’s impossible for us to understand what it would be like for him to see shiny capsules racing by on a highway, talk to people who had been on the other side of the ocean earlier in the day, watch sports that were being played 1,000 miles away, hear a musical performance that happened 50 years ago, and play with my magical wizard rectangle that he could use to capture a real-life image or record a living moment, generate a map with a paranormal moving blue dot that shows him where he is, look at someone’s face and chat with them even though they’re on the other side of the country, and worlds of other inconceivable sorcery. This is all before you show him the internet or explain things like the International Space Station, the Large Hadron Collider, nuclear weapons, or general relativity.

This experience for him wouldn’t be surprising or shocking or even mind-blowing—those words aren’t big enough. He might actually die!

This pattern—human progress moving quicker and quicker as time goes on—is what futurist Ray Kurzweil calls human history’s Law of Accelerating Returns. This happens because more advanced societies have the ability to progress at a faster rate than less advanced societies—because they’re more advanced.

“We are on the edge of change comparable to the rise of human life on Earth” — Vernor Vinge

There is a lot of excitement about artificial intelligence (AI) and how to create computers capable of intelligent behavior. After years of steady but slow progress on making computers “smarter” at everyday tasks, a series of breakthroughs in the research community and industry have recently spurred momentum and investment in the development of this field.

Today’s AI is confined to narrow, specific tasks, and isn’t anything like the general, adaptable intelligence that humans exhibit. Despite this, AI’s influence on the world is growing. The rate of progress we have seen will have broad implications for fields ranging from healthcare to image- and voice-recognition. In healthcare, the President’s Precision Medicine Initiative and the Cancer Moonshot will rely on AI to find patterns in medical data and, ultimately, to help doctors diagnose diseases and suggest treatments to improve patient care and health outcomes.

In education, AI has the potential to help teachers customize instruction for each student’s needs. And, of course, AI plays a key role in self-driving vehicles, which have the potential to save thousands of lives, as well as in unmanned aircraft systems, which may transform global transportation, logistics systems, and countless industries over the coming decades.

Like any transformative technology, however, artificial intelligence carries some risk and presents complex policy challenges along several dimensions, from jobs and the economy to safety and regulatory questions. For example, AI will create new jobs while phasing out some old ones—magnifying the importance of programs like TechHire that are preparing our workforce with the skills to get ahead in today’s economy, and tomorrow’s. AI systems can also behave in surprising ways, and we’re increasingly relying on AI to advise decisions and operate physical and virtual machinery—adding to the challenge of predicting and controlling how complex technologies will behave.

There are tremendous opportunities and an array of considerations across the Federal Government in privacy, security, regulation, law, and research and development to be taken into account when effectively integrating this technology into both government and private-sector activities.

That is why the White House Office of Science and Technology Policy announced public workshops over the coming months on topics in AI to spur public dialogue on artificial intelligence and machine learning and identify challenges and opportunities related to this emerging technology.

The Federal Government also is working to leverage AI for public good and toward a more effective government. A new National Science and Technology Council (NSTC) Subcommittee on Machine Learning and Artificial Intelligence will meet for the first time next week. This group will monitor state-of-the-art advances and technology milestones in artificial intelligence and machine learning within the Federal Government, in the private sector, and internationally; and help coordinate Federal activity in this space.

Broadly, between now and the end of the Administration, the NSTC group will work to increase the use of AI and machine learning to improve the delivery of government services. Such efforts may include empowering Federal departments and agencies to run pilot projects evaluating new AI-driven approaches and government investment in research on how to use AI to make government services more effective. Applications in AI to areas of government that are not traditionally technology-focused are especially significant; there is tremendous potential in AI-driven improvements to programs and delivery of services that help make everyday life better for Americans in areas related to urban systems and smart cities, mental and physical health, social welfare, criminal justice, the environment, and much more.

Editor’s note: Ideas inspired from,


Ed Felten. “Preparing for the future of Artificial Intelligence– WhiteHouse”

WhiteHouse.gov. N.p., Web. 5 May. 2016.